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Abstract. The problem of finding the singularities of monotone vectors fields on Hadamard
manifolds will be considered and solved by extending the well-known proximal point algo-
rithm. For monotone vector fields the algorithm will generate a well defined sequence, and
for monotone vector fields with singularities it will converge to a singularity. It will also be
shown how tools of convex analysis on Riemannian manifolds can solve non-convex con-
strained problems in Euclidean spaces. To illustrate this remarkable fact examples will be
given.

1. Introduction

Convexity is a sufficient but not necessary condition for many important
results in mathematical programming, since there are diverse extensions
of the notion of convexity bearing the same properties, e.g., the critical
points of pseudo-convex and strictly quasi-convex differentiable functions
are global minimizers. Moreover, it is possible to modify numerical meth-
ods to solve non-convex optimization problems, e.g., the steepest descent
method with a proximal regularization [6] or with Armijo’s stepsize [2] gen-
erates a sequence that, starting at any point of R

n, converges to a mini-
mizer of a pseudo-convex differentiable function.

Classically, a function is convex if and only if its restriction to each
line segment in its domain is convex. This property inspired Ortega and
Rheinboldt [11], Avriel [1] and others to introduce the concept of arcwise
convex functions. The idea of arcwise convexity is strongly dependent on
the way of producing a suitable family of curves. By using the tools of
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Riemannian geometry, Rapcsák [15] introduces a modern novel method to
investigate arcwise convexity.

Inspired by Rapcsák [15] and Udrişte’s [17] geometrical viewpoint,
besides some nonconvex problems, we shall consider nonmonotone prob-
lems, too. We shall solve them by extending the proximal point algorithm.
Let us start with a nonconvex and a nonmonotone problem of the form:

minp∈M f (p), (1)

and

find x ∈M such that X(x)=0, (2)

where M is a subset of the Euclidean space R
n, f :M → R is a function

and X :M → R
n a vector field. By choosing an appropriate Riemannian

metric on M, sometimes we can transform problems (1) and (2) into a
convex and monotone unconstrained problem on M, respectively, that can
be studied by using the intrinsic geometry of M. Since there is an anal-
ogy of ideas, we shall use this parallel approach of optimization and sin-
gularity problems throughout the paper. In the meantime, note that for
a gradient vector field (i.e., a vector field that is the gradient of a func-
tion with respect to the metric of M), a singularity problem is equivalent
to an optimization problem, and if the gradient vector field is monotone
(with respect to the metric of M [8]), it is equivalent to a convex opti-
mization problem (with respect to the metric of M [14]). Bearing this in
mind, problem (2) can be viewed as a non-gradient extension of problem
(1) considered by Rapcsák [15]. The examples given for problem (1) follow
the ideas of Rapcsák and will be presented here for the sake of parallelism
between gradient (i.e., optimization problems) and non-gradient singularity
problems. Several methods have been extended to Riemannian context to
solve problems (1) and (2), see [14,15,17–20]. However, solving optimiza-
tion problems of type (2), the use of an extended proximal point method
is a new idea in the theory of optimization on Riemannian manifolds.

The proximal point algorithm for finding zeros of monotone operators T
on Hilbert spaces, see [12], generates a sequence of points {pk} as follows:
pk+1 is the unique zero of the regularized operator T +λkI , where λk is a
real number satisfying 0<λk� λ̃, for some λ̃>0, and I is the identity oper-
ator. The idea is to solve the possibly ill-posed problem of finding zeros of
T , by solving a sequence of well-posed problems (i.e., to have exactly one
solution when T is strongly monotone) of finding the zeros of T +λkI .

An extension of this problem is the following variational inequality prob-
lem: given a convex constraint set C and the monotone operator T find
p∗ in C such that 〈T (p∗),p− p∗〉 � 0 for all p ∈C. When the constraint
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set of the variational inequality problem is a Riemannian manifold and
the operator is a monotone vector field with respect to the metric of
the Riemannian manifold, the variational inequality problem becomes the
problem of finding the singularities of the monotone vector field.

In the case of Hadamard manifolds we shall solve this problem by
extending the proximal point algorithm as follows: We shall generate a
sequence {pk}, where pk+1 is defined as the unique singularity of the regu-
larized vector field X+λk gradρpk , the sequence {λk} is such that 0<λk <λ̃
for some λ̃ > 0, the vector field gradρpk is the gradient vector field of the
map ρpk = 1

2d
2(., pk) and d is the Riemannian distance.

2. Basic Concepts

In this section some frequently used notations, basic definitions and the
important properties of Riemannian manifolds are presented. They can
be found in any introductory book on Riemannian geometry(eg. [3,16]).
Throughout the paper, all manifolds are smooth, i.e., C2, paracompact and
connected and all functions and vector fields are smooth. C2 is sufficient
for the smoothness of the functions considered and C1 for the smoothness
of the vector fields considered.

Given a Riemannian manifold M, denote the set of vector fields over M
by X(M), the tangent space of M by TpM. The metric in M is denoted by
〈·, ·〉 and the corresponding norm by ‖ ·‖. Let ∇ be the Levi-Civita connec-
tion associated to (M, 〈, 〉). The gradient of a function f , defined in M, is
denoted by grad f and by Hess f its Hessian. The differential of a vec-
tor field X is denoted by AXv = ∇vX, where v is a tangent vector. The
map P(c)at :Tc(a)M→Tc(t)M, denotes the parallel transport along the curve c
from c(a) to c(t) and P(c−1)at :Tc(t)M→Tc(a)M denotes its inverse. Denote
the geodesic equation by ∇ γ ′γ ′ = 0. A Riemannian manifold is complete
if its geodesics are defined for any real values of t . Hopf-Rinow’s theo-
rem asserts that if this is the case, any pair of points in M can be joined
by a (not necessarily unique) minimal geodesic segment. Moreover, (M,d)
is a complete metric space, and bounded and closed subsets are compact.
In the paper, all manifolds are assumed to be complete. The exponential
map expp : TpM→M is defined by expxv = γv(1, x), where γ (·) = γv(., p)

is the geodesic defined by its position p and velocity v at p. A com-
plete, simply connected Riemannian manifold of nonpositive sectional cur-
vature is called a Hadamard manifold. From now on, let H be a Hadamard
manifold.

Let �(p1p2p3) be a geodesic triangle in H and γi the geodesic segments
joining pi+1 and pi+2, where i= 1,2,3 (mod 3). Set �i = l(γi) be the length
of γi and the angles θi =<)

(
γ ′
i−1(0), −γ ′

i+1(li+1)
)
. From [16] Proposition

4.5, page 223, we obtain
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�2
i+1 +�2

i+2 −2�i+1�i+2 cos θi ��2
i . (3)

Let M and N be connected Riemannian manifolds and � : M → N an
isometry, i.e., � is C∞, and for all p ∈ M and u, v ∈ TpM, we have
〈d�pu, d�pv〉 = 〈u, v〉. One can verify that � preserves geodesics, i.e., β
is a geodesic in M if and only if γ =� ◦ β is a geodesic in N , and that
d�γ(t)γ

′(t) = β ′(t). Furthermore, � preserves the distance function, i.e.,
d(�(p),�(q))=d(p, q), for all p,q ∈M.

Németh [7], introduced the notion of monotone vector fields on M as fol-
lows: X is monotone if ϕ(X,γ )(t)=〈X(γ (t)), γ ′(t)〉 is monotone nondecreas-
ing for all geodesics γ in M. In [4], a vector field X on M was called
strongly monotone if Ψ(X,γ )(t)= ϕ(X,γ )(t)− λ‖γ ′(0)‖2t, is a monotone non-
decreasing function of t for some λ> 0 and all geodesics γ in M. In the
case of M=H , it has been proved [4] that X is strongly monotone if ond
anly if for all p, q ∈H it holds that

〈P(γ−1)01X(q)−X(p), expp−1q〉�λd2(p, q), (4)

where γ : [0,1] →H is the geodesic joining p and q and P is the parallel
transport. Furthermore, there exists a unique p̂∈H such that X(p̂)=0.

EXAMPLE 2.1. Take p′ ∈H . The function ρp′ :H →R, defined by

ρp′(p)= 1
2d

2(p,p′), (5)

is smooth and its gradient can be calculated by the formula [16]

gradρp′(p)=− exp−1
p p′. (6)

It has been proved [4] that, for all fixed p′ ∈H , the gradient vector field
gradρp′(p) is strongly monotone.

EXAMPLE 2.2. A function f :M→ R is called convex, strictly convex or
strongly convex if its composition with each geodesic γ in M is a con-
vex, strictly convex or strongly convex function, respectively. In Ref. [15,17]
it was proved that if f is convex (strictly convex), gradf is a mono-
tone (strictly monotone) vector field. In Ref. [4] it was proved that if f is
strongly convex, gradf is a strongly monotone vector field.

Examples of monotone vector fields which are of nongradient type can be
found in [7–9].
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PROPOSITION 1. Let M, N be Riemannian manifolds and �:M→N an
isometry. The function f :N→R is convex iff g:M→R, defined by g(p)=
f (�(p)), is convex.

Proof. It follows from the definition of convexity and the fact that isom-
etries preserve geodesics.

PROPOSITION 2. Let M and N be Riemannian manifolds, X ∈X(M) and
�:M→N an isometry. Let Y ∈X(N) be defined by Y =d�◦X ◦�−1. Then,

(i) X is monotone if and only if Y is monotone;
(ii) X is strictly monotone if and only if Y is strictly monotone and

(iii) X is strongly monotone if and only if Y is strongly monotone.

Proof. We shall prove (iii). The proofs of (i) and (ii) are similar. Since �
is an isometry, β=�−1 ◦γ is a geodesic in M if and only if γ is a geodesic
in N and it holds that ‖γ ′(t)‖=‖β ′(t)‖. Then, for all λ, we have

�(Y,γ )(t)=ϕ(Y,γ )(t)−λ‖γ ′(0)‖2t=〈Y (γ (t)), γ ′(t)〉−λ‖γ ′(0)‖2t

=〈d��−1(γ (t)).X(�
−1(γ (t))) , γ ′(t)〉−λ‖γ ′(0)‖2t

=〈d�β(t)X(β(t)) , d�β(t)β
′(t)〉−λ‖β ′(0)‖2t

=〈X(β(t)) , β ′(t)〉−λ‖β ′(0)‖2t=�(X,β)(t).

Therefore, �(Y,γ ) is monotone for some λ iff �(X,β) is monotone.

3. The Proximal Point Algorithm

3.1. the proximal point algorithm for optimization problems

The proximal point algorithm for the minimization of a convex function on
a Hadamard manifold was studied in [5]. For a convex function f :H→R,
the proximal point sequence for the minimization of f on H is given by

pk+1 =arg minp∈H

{
f (p)+ λk

2
d2(p,pk)

}
. (7)

We begin by giving some examples of proximal iteration for optimization
problem on a Hadamard manifold.
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3.1.1. The space R
n with other metric

Endowing R
n with the metric

G(p)=

⎛

⎜⎜⎜⎜⎜
⎝

1 0 . . . 0 0

0
. . .

...
...

... 1 0 0
0 . . . 0 1+4p2

n−1 −2pn−1

0 0 −2pn−1 1

⎞

⎟⎟⎟⎟⎟
⎠
,

we obtain the Riemannian manifold MG. Considering R
n with the

usual Euclidean metric, the map �:Rn → MG, defined by �(x) =
( x1 , x2 , . . . , xn−1, x

2
n−1 −xn ) is an isometry. Then, the Riemannian distance

in MG is given by d2(p, q)=‖�−1(p)−�−1(q)‖2 =∑n−1
i=1

(
pi −qi

)2 + (
p2
n−1 −

pn−q2
n−1 +qn

)2
and the proximal point iteration (7) becomes

pk+1 =arg minp∈Rn

{
f (p)+ λk

2

n−1∑

i=1

(
pi − (pk)i

)2

+(
p2
n−1 −pn− (pk)2n−1 + (pk)n

)2
}
.

3.1.2. The positive Orthant with other metric

Endowing R
n with the Euclidean metric and R

n
++ with the metric G :

R
n
++ →Sn++,

G(p)=diag
(
p1

−2, p2
−2, . . . , pn

−2) , (8)

we obtain that the mapping �: Rn→R
n
++,

�(x)= ( ex1 , ex2 , . . . , exn ) (9)

is an isometry. Then, d2(p, q)=‖�−1(p)−�−1(q)‖2 =∑n
i=1 ln2

(pi/qi) and
the proximal point iteration (7) becomes

pk+1 =arg minp∈Rn++

{

f (p)+ λk

2

n∑

i=1

ln2
[
pi

(pk)i

]}

.
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3.1.3. Hypercube with other metric

Set

Qn=
{
(p1, . . . , pn)∈R

n : |pi |< π2 , i=1,2, . . . , n
}

and let ψ :
(−π

2 ,
π
2

)→R be the function defined by ψ(τ)= ln(sec τ + tan τ).
Endowing the Hypercube Qn with the Riemannian metric G:Qn→Sn++,

G(p)=diag
(
sec2 p1, sec2 p2, . . . , sec2 pn

)
, (10)

and R
n with the Euclidean metric, the mapping � :Qn→R

n,

�(p)= (
ψ(p1), . . . ,ψ(pn)

)
(11)

is an isometry. Then, d2(p, q)=‖�(p)−�(q)‖2 =∑n
i=1[ψ(qi)−ψ(pi)]2 and

the proximal point iteration (7) becomes

pk+1 =arg minp∈Qn

{

f (p)+ λk

2

n∑

i=1

[
ψ((pk)i)−ψ(pi)

]2

}

.

3.1.4. The cone of positive semidefinite matrices Sn++ with other metric

Endowing Sn++ with the Riemannian metric defined by 〈U,V 〉 =
tr

(
VX−1UX−1

)
, we obtain the Riemannian manifold that is complete of cur-

vature K�0. The Riemannian distance in the manifold Sn++ is given by

d2(X,Y )=
n∑

i=1

ln2
λi

(
X− 1

2YX− 1
2

)
,

where λ(A) denotes the eigenvalue set of the symmetric matrix A (see [10]).
Therefore, the proximal point iteration (7) becomes

Xk+1 =arg minX∈Sn++

{

f (X)+ λk

2

n∑

i=1

ln2
λi

(
X− 1

2XkX
− 1

2

)}

.

3.2. the proximal point algorithm for singularity problems

Let X ∈ X(H) be a monotone vector field and O∗ ⊂H the set of singu-
larities of X. The proximal point algorithm for finding zeros of mono-
tone operators was proposed by T. Rockafellar in [12]. We will extend this
algorithm for finding singularities of monotone vector fields.
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The proximal point algorithm for finding a singularity of a monotone
vector field on a Hadamard manifold requires one exogenous constant
λ̃>0 and one exogenous sequence {λk}, satisfying 0<λk < λ̃, for all k. It
is defined as follows: take p0 ∈H and define pk+1 as the solution of the
following equation

(X+λk gradρpk )(pk+1)=0, (12)

where ρp′ is defined in (5). As gradρpk is strongly monotone and λk > 0,
it follows that X+λk gradρpk is strongly monotone. Therefore, there exists
a unique pk+1 ∈H such that (X+λk gradρpk )(pk+1)= 0 and our algorithm
is well defined. From now on, we will refer to the sequence {pk} gen-
erated by (12) as the proximal sequence. Note that by (6), it holds that
gradρpk (pk+1)=− exp−1

pk+1
pk. Then, equation (12) is equivalent to

λk exp−1
pk+1

pk =X(pk+1). (13)

3.2.1. Convergence of the proximal sequence

We begin the convergence proof with an auxiliary result. First, we pres-
ent the well-known concept of Fejér convergence and its application in our
context.

In a complete metric space (M,d), the sequence {pk}⊂M is said to be
Fejér convergent to the nonempty set U ⊂M, when

d(pk+1, y)�d(pk, y) (14)

for all y ∈U and k�0.

LEMMA 1. In a complete metric space (M,d), if {pk}⊂M is Fejér conver-
gent to a nonempty set U ⊂M, then {pk} is bounded. If, furthermore, a clus-
ter point p of {pk} belongs to U , limk→+∞ pk =p.

Proof. Take p∈U . Inequality (14) implies that d(pk,p)�d(p0, p), for all
k. Therefore, {pk} is bounded. Take a subsequence {pkj } of {pk} such that
limk→+∞ pkj = p. By (14), the sequence of positive numbers {d(pk,p)} is
decreasing and it has a subsequence, namely {d(pkj , p)}, which converges
to 0. Thus, the whole sequence converges to 0, i.e., limk→+∞ d(pk,p)= 0,
implying limk→+∞ pk =p.

LEMMA 2. If X ∈ X(H) is monotone and {pk} is the proximal sequence,
then

d2(pk+1, pk)+d2(pk+1, q)− 2
λk

〈X(pk+1), exp−1
pk+1

q〉�d2(pk, q), (15)

for all q ∈H .
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Proof. Take q ∈H . Consider the geodesic triangle �(qpkpk+1). From (3),
we have

d2(pk+1, pk)+d2(pk+1, q)−2d(pk+1, pk)d(pk+1, q) cos θ �d2(pk, q),

where θ =<) (exp−1
pk+1

pk, exp−1
pk+1

q), implying that

d2(pk+1, pk)+d2(pk+1, q)−2〈exp−1
pk+1

pk, exp−1
pk+1

q〉�d2(pk, q). (16)

The statement of the Lemma follows by using (13) in (16).

THEOREM 1. If X∈X(H) is monotone, {pk} is the proximal sequence and
O∗ is non-empty, then limk→+∞ pk =p∗ for some p∗ ∈H .

Proof. Take p̃∈O∗. The monotonicity of X implies 〈X(pk+1), exp−1
pk+1

p̃〉�
〈X(p̃), exp−1

pk+1
p̃〉. Since X(p̃)=0, we have that

〈X(pk+1), exp−1
pk+1

p̃〉�0. (17)

Then, substituting q by p̃ in (15) and by using (17), we get

0�d2(pk+1, pk)�d2(pk, p̃)−d2(pk+1, p̃). (18)

The inequality (18) implies that {pk} is Fejér convergent to the set O∗

and that limk→∞ d2(pk+1, pk)=0. By Lemma 1, there exists a subsequence
{pkj } of {pk} which converges to some p∗ ∈H . It holds that d(pkj+1, pkj )=
‖ exp−1

pkj+1
pkj‖. Then, by (13)

λkj d(pkj+1, pkj )=λkj‖ exp−1
pkj+1

pkj‖=‖X(pkj+1)‖. (19)

Since X is continuous, {pkj } is convergent to p∗ and 0<λk <λ̃, (18) implies
that limk→∞ d2(pkj+1, pkj )=0. Hence, (19) yields,

‖X(p∗)‖= lim
j→+∞

‖X(pkj )‖= lim
j→+∞

λkj d(pkj+1, pkj )=0,

implying that p∗ ∈ O∗. Therefore, by Lemma 1, limk→∞ pk = p∗ and the
proof is complete.

3.2.2. Invariance of the proximal sequence through isometries

Isometric manifolds bear the same properties from Riemannian geomet-
ric viewpoint, but on some of them calculus is much easier. On the other
hand, in this subsection we shall show that proximal sequences are invari-
ant through isometries. The above remarks will be exploited in the example
of Section 3.2.3.
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PROPOSITION 3. Let H1,H2 be Hadamard manifolds and � : H1 → H2

an isometry. If {pk} is the proximal sequence on H1 with the starting point
p0 ∈H1 associated to the vector field X∈X(H1) and the sequence {λk}, then
{�(pk)} is the proximal sequence on H2 with the starting point �(p0) asso-
ciated to the vector field Y =d�◦X ◦�−1 ∈X(H2) and the sequence {λk}.

Proof. Since � is an isometry, the geodesics of H1 are transformed into
geodesics of H2 such that the tangent vector of a geodesic on H1 is trans-
formed into the tangent vector of its transformed geodesic on H2. Hence,
we have

d�(pk+1)
(
exp−1

pk+1
pk

)= exp−1
�(pk+1)

�(pk). (20)

The proximal sequence {pk} on H1, with respect to a starting point p0 ∈H1,
associated to the vector field X∈X(H1) and the sequence {λk} is given by

λk exp−1
pk+1

pk =X (pk+1) . (21)

Since Y ◦�= d� ◦X, by applying d�(pk+1) to (21) and by using (20), we
obtain

λk exp−1
�(pk+1)

�(pk)=Y (�(pk+1)).

Hence, {�(pk)} is the proximal sequence on H2, with respect to the start-
ing point {�(p0)}, associated to the vector field Y ∈X(H2) and the sequence
{λk}.

With the notations of Proposition 3, we have as follows:

COROLLARY 1. If the proximal sequence {pk} is convergent to a singular-
ity p∗ of X, then the proximal sequence {�(pk)} is convergent to the singu-
larity �(p∗) of Y .

Proof. It follows immediately from the equality Y ◦�=d�◦X.

3.2.3. Example

Let H
n be the n dimensional hyperbolic space of constant sectional curva-

ture K=−1. Consider the following model for H
n:

M={
ξ = (ξ1, . . . , ξn, ξn+1)∈R

n+1 : ξn+1>0 and {ξ, ξ}=−1
}
,

where for the vectors ξ = (ξ1, . . . , ξn+1), η = (η1, . . . , ηn+1) ∈ R
n+1 and

{ξ, η} = ξ1η1 + · · · + ξnηn − ξn+1ηn+1. The metric of M is induced from the
Lorentz metric { . , . } of R

n+1 and it will be denoted by the same symbol.
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Then, a normalized geodesic γx of H
n starting from x(γx(0)=x), will have

the equation

γx(t)= (cosh t)x+ (sinh t)v, (22)

where v= γ̇x(0)∈TxHn is the tangent unit vector of γ in the starting point.
We also have {u, x} = 0, for all u ∈ TxHn. Equation (22) implies exp tv =
(cosh t)x+ (sinh t)v, for any unit vector v and

exp−1
x y=arccosh(−{x, y}) y+{x, y}x

√
{x, y}2 −1

, (23)

for all x, y ∈ H
n and v ∈ TxHn. This model of the hyperbolic space is

called the Minkowski model. Next, consider the following model for H
n:

U ={x= (x1, x2, . . . , xn)∈R
n :xn >0} . The set U is the upper half-plane of

dimension n. Endowing U with the Riemannian metric defined by matrix
G= (gij ), where

g11(x1, . . . , xn)=· · ·=gnn(x1, . . . , xn)= 1
xn
, gij (x1, . . . , xn)=0, if i �= j.

we obtain the upper half-plane model of the Hyperbolic space H
n.

Consider the case n= 2. It can be seen that the map � : M→U given by
the equation

(x1, x2, x3) → 2
x3 −x2

(x1,1), (24)

is an isometry between M and U with inverse �−1: U →M given by the
equation

(x1, x2) → 1
4x2

(
4x1, x

2
1 +x2

2 −4, x2
1 +x2

2 +4
)
.

By (23), if X is a vector field on M and {λk} is an exogenous sequence, the
proximal sequence {pk}, with respect to a starting point p0 ∈M, X and {λk}
is given by the recurrence

arccosh
(− {

pk+1, pk
}) pk +{

pk+1, pk
}
pk+1

√{
pk+1, pk

}2 −1
=X (

pk+1) .

If Y = d� ◦ X ◦�−1 is the transformed vector field of X on U , with
respect to �, {�(pk)} is the proximal sequence, with respect to the start-
ing point {�(p0)}, to Y and {λk}. If X is monotone and has at least one
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singularity, the proximal sequence {pk} is convergent to a singularity p∗ of
X. In this case, the proximal sequence {�(pk)} is convergent to the singu-
larity �(p∗) of the monotone vector field Y .

In [7] it is shown that the vector field X(x1, x2, x3)= (x1x3, x2x3, x
2
3 − 1)

on M is strictly monotone. The only singularity of X is (0,0,1). The prox-
imal sequence {pk}, with respect to a starting point p0 ∈M, X and {λk} is
given by the recurrence

arccosh
(− {

pk+1, pk
}) pk +{

pk+1, pk
}
pk+1

√{
pk+1, pk

}2 −1

=
(
pk+1

1 pk+1
3 , pk+1

2 pk+1
3 ,

(
pk+1

3

)2
−1

)
,

and is convergent to (0,0,1). It is easy to calculate that the image of X
through � is Y = 1

32

(
16x1x2,2x2

1x
2
2 −8x2

1 +8x2
2 −32

)
and �(0,0,1)= (0,2).

Y is strictly monotone on U . By (24) {(2/(pk3 −pk2))(pk1,1)} is the proximal
sequence, with respect to the starting point (2/(p0

3 −p0
2))(p

0
1,1), Y and {λk}.

It is convergent to (0,2) the only singularity of Y .

4. Problems From the Geometric Viewpoint

Let us consider again the problems (1) and (2) which are nonconvex and
nonmonotone in the original representation. Choosing an appropriate met-
ric, the problems can be transformed into convex and monotone ones,
respectively. We note that our goal is to transform nonconvex (nonmono-
tone) problems into Hadamard convex (Hadamard monotone) ones. In this
viewpoint, we are not interested in whether the curvature is zero or not,
only its sign is important.

4.1. the plane with other metrics

Consider the following unconstrained problems defined in the Euclidean
plane.

PROBLEM 4.1. In optimization problem (1), take the Rosenbock’s banana
function f : R2 →R, f (p1, p2)=100

(
p2 −p1

2
)2 + (

1−p1
)2
.

PROBLEM 4.2. In problem (2), take X : R
2 → R

2, X(p) = (−p2
1 + p1 +

p2,−2p3
1 +2p2

1 +2p1p2 −p1).

Problem 4.1 is not convex in the classical sense, i.e., the objective function
f is not convex, and Problem 4.2 is not monotone in the classical sense,
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i.e., the vector field X is not monotone. Endowing R
2 with the Riemann-

ian metric G : R2 →Sn++,

G(p1, p2)=
(

1+4p2
1 −2p1

−2p1 1

)
,

we obtain the Riemannian manifold MG that is complete and of constant
curvature K = 0. Note that the map �: R

2 →MG, �(x1, x2)=
(
x1, x

2
1 − x2

)

is an isometry. Now, define the convex function g : R
2 → R by g(x1, x2)=

100x2
2 + (1 − x1)

2 and observe that g(x1, x2)= f (�(x1, x2)). Therefore, by
Proposition 1, it follows that f is convex in MG. Let Y : R

2 → R
2 be a

monotone vector field defined by Y (x1, x2)= (x1 − x2, x1). Note that X =
d�◦Y ◦�−1. Therefore, by Proposition 2, X is monotone in MG.

PROBLEM 4.3. In problem (1), take f : R
2 → R, f (p1, p2) = ep1

(
cosh(p2)−1

)
.

PROBLEM 4.4. In problem (2), take X : R
2 → R

2, X(p1, p2) = (
ep1

(cosh(p2)−1) e−p1 sinh(p2)
)
.

Problem 4.3 is not convex in the classical sense, i.e., the objective function
f is not convex, and Problem 4.4 is not monotone in the classical sense,
i.e., the vector field X is not monotone. Endowing R

2 with the Riemannian
metric G: R2 →Sn++,

G(p1, p2)=
(

1 0
0 e2p1

)
,

we obtain the Riemannian manifold MG that is complete and of constant
curvature K=−1. The Christoffel symbols are given by

�1
11 =�2

11 =�1
12 =�1

21 =�2
22 =0, �2

12 =�2
21 =1 and �1

22 =−e2p1 .

Then, for each vector field Y (p1, p2)=
(
a(p1, p2), b(p1, p2)

)
, defined on MG,

we have

AY (p1, p2)=

⎛

⎜
⎝

∂a
∂p1

∂a
∂p2

− e2p1b

e2p1

(
∂b
∂p1

+b
)

e2p1

(
∂b
∂p2

+a
)

⎞

⎟
⎠ . (25)
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The gradient vector field of f is gradf (p)=G−1(p)(∂f/∂p1(p), ∂f/∂p2(p)).
From (25), it follows that the Hessian matrix Hess(f )=Agrad(f ) is given by

Hessf (p1, p2)=
⎛

⎝
ep1 (cosh(p2)−1) 0

0 ep1 cosh(p2)+ e3p1 (cosh(p2)−1)

⎞

⎠ .

Note that this matrix is positive semidefinite. Therefore, f is convex in MG.
It can also be checked that

AX(p1, p2)=
(
ep1 (cosh(p2)−1) 0

0 ep1 cosh(p2)+ e3p1(cosh(p2)−1)

)
.

Thus, X is monotone in MG, see Ref. [4].

4.2. the positive orthant with other metrics

Consider the following constrained problems defined in the positive orthant.

PROBLEM 4.5. In optimization problem (1), take the poseynomial
f : Rn

++ →R,

f (p1, . . . , pn)=
m∑

i=1

ci

n∏

j=1

p
bij
j ,

where ci ∈R++ and bij ∈R for all i, j .

PROBLEM 4.6. In problem (2), take the vector field X : Rn
++ →R

n, defined

by X(p1, . . . , pn)= (a1, . . . , an), where ai = pi ln(p1 . . . pip
−1
i+1 . . . p

−1
n ) for all

i=1, . . . , n.

Problem 4.5 is not convex in the classical sense, i.e., the objective func-
tion f is not convex, and Problem 4.6 is not monotone in the classical
sense, i.e., the vector field X not monotone. Endowing R

n
++ with the Rie-

mannian metric G, defined in (8), we obtain the Riemannian manifold MG

that is complete and of constant curvature K=0. Now, define the function
g : Rn→R by

g(x1, . . . , xn)=
m∑

i=1

cie
∑n

j=1 bij xj .

Note that g is convex in the classical sense and that g(x1, . . . , xn) =
f (�(x1, . . . , xn)), where � is the isometry defined in (8). Therefore, by
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Proposition, 1, it follows that f is convex in MG. Let Y : R
n → R

n be the
monotone vector field, defined by Y (x)=Ax, where x= (x1, . . . , xn) and

A=

⎛

⎜⎜⎜
⎝

1 −1 . . . −1

1 1
. . .

...
...
. . .

. . . −1
1 . . . 1 1

⎞

⎟⎟⎟
⎠
, (26)

Note that Y =d�◦X ◦�−1, where � is the isometry defined in (8). Hence,
from Proposition 2, X is monotone in MG.

4.3. the hypercube with other metric

Consider the following problems:

PROBLEM 4.7. In problem (1), take f :Qn → R, defined by f (p1, . . . , pn)

=ψ(p1)+· · ·+ψ(pn).

PROBLEM 4.8. In problem (2), take X:Qn→R
n, defined by X(p1, . . . , pn)=

(a1, . . . , an), where ai = cos(pi)
(∑

j�i ψ(pj )−
∑

j>i ψ(pj )
)
, for all

i=1, . . . , n.

Problem 4.7 is not convex in the classical sense, i.e., the objective func-
tions f is not convex, and Problem 4.8 is not monotone in the classi-
cal sense, i.e., the vector field X is not monotone. Endowing Qn with the
Riemannian metric G defined in (10), we obtain the Riemannian manifold
MG that is complete and of constant curvature K= 0. Now, define a con-
vex function g : R

n → R by g(x1, . . . , xn)= x1 + · · · + xn and observe that
f (p1, . . . , pn)= g(�(p1, . . . , pn)), where g is an isometry defined in (11).
Therefore, by Proposition 1, it follows that f is convex in MG. Let Y :Rn→
R
n be defined by Y (x)=Ax, where A is the matrix (26). Taking �, the

isometry defined in (11), we obtain that X=d�−1 ◦Y ◦�. Hence, by Prop-
osition 2, X is monotone in MG.

4.4. the cone of the positive semidefinite matrices with other metric

Consider the following constraint problems:

PROBLEM 4.9. In optimization problem (1), take f (X)= (
ln detX

)2
and

M=Sn++.

PROBLEM 4.10. In problem (2), take T (X)=2
(

ln detX
)
X and M=Sn++.
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Problem 4.9 is not convex in the classical sense, i.e., the objective func-
tion f is not convex, and Problem 4.10 is not monotone in the classi-
cal sense, i.e., the vector field X is not monotone. Endowing Sn++ with the
Riemannian metric defined in Section 3.1.4, its geodesic equation becomes

ζ ′′(t)= ζ ′(t)ζ−1(t)ζ ′(t), (27)

see [10]. A function f , defined on Sn++, is convex if and only if for any geo-
desic ζ in Sn++

Hessfζ(t)
(
ζ ′(t), ζ ′(t)

)= tr
(
f ′′(ζ(t))ζ ′(t), ζ ′(t)

)+ tr
(
f ′(ζ(t)), ζ ′′(t)

)
�0,

(28)

that is, the Hessian matrix of the function f is positive semidefinite. There-
fore, from equations (27), (28) and the definition of the Hessian, it follows
that function f is convex in Sn++ if it satisfies the condition

tr
(
Vf ′′(X)V

)+ tr
(
VX−1Vf ′(X)

)
�0, (29)

for all X∈Sn++ and V ∈Sn. It can be checked whether f satisfies the con-
dition (29) and gradf (X)=T (X). Hence, f is convex and T is monotone
(see Example 2.2).

5. Final Remark

Here we presented a novel method of finding the singularities of monotone
vector fields on Hadamard manifolds by using an extension of the classi-
cal proximal point method of Rockafellar for finding zeros of monotone
operators. Whether Rockafellar’s method can be extended to more general
Riemannian mamifolds or not is still unclear.
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